Conﬁgure a Safe Environment
or PHP Web Apps

Zend Core for i5/0S provides options to safeguard your system

by Alan Seiden

ITHITS SUPPORT OF THE POPU-

lar web programming language PHP,

the System i runs a large variety of PHP-

based software for the web. Given the
Internet’s open nature, prudent system administrators
who deploy web applications in IBM’s Zend Core for
i5/0S§ environment will want to ensure security. What
precautions are needed?

Although System i’s architecture automatically pro-
tects against buffer overruns, viruses, and worms, and
Zend Core PHP provides additional safeguards beyond
those that exist in generic PHP, you should add safe-
guards against other dangers, such as

* propagating viruses to browsers (even if the site itself
is immune)

* password “sniffing” (stealing)

* unauthorized running of applications

¢ disclosure or alteration of private data

Some of these safeguards require specific PHP pro-
gramming techniques, which I'll discuss in a future
article. Here, I discuss how you can obtain broad pro-
tection within the PHP environment itself.

Note: Web security is a rapidly evolving field. All
the recommendations I discuss here are believed to be
accurate as of Zend Core for i5/0S version 2.0.1 (i.e.,
PHP 5.2.1)

The First Line of Defense
No matter what applications you run, a secure run-
time environment reduces your risk of known and
| unknown problems. PHP security expert Chris
| Snyder, co-author with Michael Southwell of Pro PHP
|| Security (Apress 2005), recommends multiple levels of
| protection — so-called “defense in depth” — because
“you don’t know what will go wrong.” Snyder, a web
developer at the Fund for the City of New York, con-
siders a web application to be only as safe as the envi-
ronment in which it runs.

The PHP execution environment is the outer perim-

Networking & Systems Management -

36 PROVIP System iNEWS DECEMBER 2007

eter of application security; you want to stop attacks here
if at all possible. This article deals with that outer ring of
defense, including elements such as PHP and application
patch maintenance, encryption, directory structures, con-
figuration files, and the regular updating of PHP.

Keep PHP and Apps Up to Date
Each new release of PHP improves security by elim-
inating vulnerabilities reported by the PHP com-
munity. Between releases, Zend issues “hot fixes”

— temporary patches that correct serious bugs that
could compromise security until the next release
becomes available.

Zend’s Shlomo Vanunu recommends that adminis-
trators keep current by configuring automatic Zend
Network updates, which will apply patches and release
updates as needed to maintain security. Vanunu, a senior
consultant in Zend’s lab in Ramat-Gan, Israel, and a
team leader of Zend’s i5 Global Services department,
notes that IBM has arranged for all System i custom-
ers to get these updates through a free subscription to
Zend Network Silver Support.

Here are the steps to configure automatic updates:

1. Register at Zend Network (zend.com/network). You
may have done this already if you downloaded

Zend Core from the web.
2. From a System i command line, type in the following:

GO ZENDCORE/ZCMENU

3. Choose menu option 2 — Update via Zend Network.
4. From the Update menu, choose to update immedi-
ately or on a schedule.

Besides PHP’ own updates, popular PHP-based web
applications issue their own patches and regularly release
upgrades. According to Chris Snyder, even the best proj-
ects end up with some bugs that can be dangerous. So it
behooves everyone to stay informed about vulnerabilities
and corresponding updates using these methods:

SystemiNetwork.com

* SecurityFocus summaries, led by Daniel Convissor
(phpsec.org/projects/vulnerabilities/securityfocus.html)

* e-mail newsletters provided by development teams

* web-based forums, which are a source of news and a
good way to get to know the developers

Also, I should include a word about PHP’s configu-
ration file, php.ini. PHP’ global settings — including
the security values shown in this article — are stored in
/ust/local/Zend/Core/etc/php.ini. It goes without say-
ing that you must control access to this file to maintain
a secure system. This means limiting who has access to
the file and ensuring that no web application has write-
enabled access to it. This file can be edited with the
WRKLNK command and Windows-based text editors.

The php.ini file format follows the popular
variable=value syntax: setting = value. For example:

error_log = /ust/local/Zend/Core/logs/php_error_log

When the value is boolean (an on or off value), the
line should read:

setting = On o7 setting = Off
For example:
log_errors = On

Note: You can use the numerals 1 and 0 interchange-
ably with On and Off. You can also access the settings
of php.ini graphically through the web-based Zend

Core control center with these steps:

1. Go to http://hostname:8000/ZendCore.
2. Click the Configuration menu.
3. Click the PHP Configuration option.

No matter how you edit php.ini, updates will not
take effect until Zend’s Apache web server is restarted.
To restart Apache, follow these steps:

1. Type in GO ZENDCORE/ZCMENU.
2. Choose option 5: Service Management menu.
3. Choose option 6: Restart Apache server instances.

Beware of Uninitialized Variables
For efficiency, PHP does not check whether variables
have been initialized before they are used. When pro-
grammers neglect to initialize variables, “unintended
consequences” may occur. Normally, uninitialized vari-
ables don’t present a security problem, even though they

SystemiNetwork.com
e

can cause application failure. However, one scenario
makes uninitialized variables a loaded gun: PHP%
register_globals option.

This setting controls whether or not variables
can be set directly from the queryString arguments
included in the URL. The default value for regis-
ter_globals is Off, which prevents URL assignment
of variables. If it’s set to On, however, any user can
manipulate script variables directly by including
assignments on the URL. For example, if your script
uses the variable authenticationPassed to indicate that
the user has been authenticated, an interloper could
simply add the string “authenticationPassed=1" to a
URL, neatly bypassing your authentication code.

The obvious safeguard against such abuse is to ensure
that register_globals stays at its default Off value. For
more examples of register_globals vulnerabilities, see
php.net/register_globals.

Program Error Messages

Where would we be without program error mes-
sages? I'm not talking about messages to end users
such as “zip code required,” but errors that describe
internal programming problems such as “array index
out of bounds.”

We do need to get these messages when develop-
ing our applications. Nevertheless, once a system is
deployed to end users, displaying such messages not
only looks amateurish, but it could reveal sensitive
information such as file locations and internal API
parameters. What’s more, if search engines index your
error messages, hackers could search for their favorite
delicious exploitable errors. This technique is actually
widespread enough to have a name: “Google hacking.”

You can ensure that error messages accrue in your
log file (where you can inspect them) but remain out of
public view with the following php.ini settings:

display_errors = Off
Tog_errors = On
error_log = /usr/local/Zend/
Core/logs/php_error_log (
the default)
error_reporting =
E_ALE- [“EZSTRICTF

When E_ALL | E_STRICT is specified, PHP will
log all errors, no matter how small, including warn-
ings and notices (such as of uninitialized variables). Fo
more information about secure error reporting, see
php.net/error_reporting.

Conceal phpinfo()
The function phpinfo() (manual page: php.net

DECEMBER 2007 System iNEWS PROVIP 37

(444 | Juawabeuely swaysks 1§ BupOMIBN

M SAFE PHP ENVIRONMENT

/phpinfo) outputs a list of all PHP settings, such as
php.ini values, extension module names and version
numbers, and Apache variables (Figure 1).

The most common usage for this function is a simple
HTML document named phpinfo.php, which contains
the brief PHP snippet:

<?php
phpinfo(Q);
7>

This tiny bit of code will expand into a large HTML
document listing all of PHP .ini settings, compila-
tion options, included extension modules, and a ton of
other information you’d rather hackers not see.

Although phpinfo() is an invaluable debugging tool,
collecting information from disparate sources on a single
page, hackers readily use it to find weaknesses. You'll cer-
tainly want to have ready access to phpinfo() output for
application troubleshooting, but you should take care to
hide this access, possibly by password-protecting it.

PHP version 5.2.1 improved the situation by
adding keywords instructing search engines to not
index phpinfo pages, reducing the threat of Google
hacking. Still, an outsider viewing your phpinfo()
would find more than you want to reveal. So by no
means should you employ the phpinfo.php conven-
tion, which every hacker looks for when surveying a
potential victim site.

Encrypt Your Data

Security expert Chris Snyder recommends using encryp-
tion (a method of keeping data intact and confidential
until it reaches the intended recipient) whenever possible.

Why encrypt? If your web server sends unen-
crypted (plain text) data, the data can be spied on or
even altered before it reaches its destination. Such
mischief can occur in numerous places: inside your
corporate LAN (whether by employees or spyware),
on the Internet, or from a wireless signal in an
Internet café.

Encryption is especially warranted when sending
sensitive information such as passwords, credit card
information, and personal or confidential data.

. The most common encryption method is Secure

| Sockets Layer/Transport Layer Security (SSL/TLS),

. which encrypts data between the application server
and a user’s browser so that someone eavesdropping on
HTTP packets en route cannot decode them.

However, keep in mind that SSL/TLS does not pre-
vent an end user from seeing any data transmitted by the
server, including data that might be encoded in “hidden”

Networking & Systems Management -

38 PROVIP System iINEWS DECEMBER 2007

System lOS‘OO LUNA 4 5 00100001B27E
Build Date May 2 2007 12:46:41
Configure

Command ‘—enable-force-cgi-redirect "~enable-fastcgi’ '~disable-debug’ '~enable-inline-optimization’

‘—enable-memory-limit "~disable-all’ '—enable-ctype’ ‘~enable-dom’ ‘—enable-libxml"]
“~with-libxml-dir=fusrlocaliZend/Core’ ‘—with-openssi=/usr' ~with-pcre-regex’
‘—enable-session’ ‘—enable-simplexml' ‘—enable-spr' —enable-wddx —enable-xml'
‘~with-zZlib=fusr’ ‘-with-pear’ ‘-with- al/Z¢

N-apxs2: 2/bin/apxs*
‘—with-layout=GNU" —enable-zmail' ‘—enable-json’‘—enable-filter —enable-hash"

—enable-reflection’

Server API Apache 2.0 Handler

Virtual disabled

Directory

Support

Configuration | /usrfiocaliZend/core/etc/php.ini
|Fite (php.ini)

Path

PHP API 20041225

PHP Extension | 20060613
Zend Extension | 220060519
Debug Build no
disabled
enabled

enabled
php, file, data, hitp, fip, compress ziib, hitps, fips

tcp, udp, unix, udg, ssl, ssiv3, sshv2, tis

FIGURE 1
Phpinfo() output (excerpt)

HTML form fields. Any user can display this content
using a browser’s View Source command. If you want to
maintain secure internal variables, use server-side session
management rather than hidden HTML fields.

System i supports SSL/TLS encryption. Users will
see the familiar “https://” prefix on URLs. You can find
instructions for setting up SSL/TLS at IBM’s online
i5/08 InfoCenter.

Separate Files
PHP-based websites of any complexity are likely to have
a mixture of external and internal files.

Browsers access external files via URLs that users
type into their browsers or click as links. Internal files,
although used by your applications (and perhaps even
displayed to users) are not accessible by browsers directly,
but should only be retrieved by application code. Internal
files pose risks if users have direct access to them.

Examples of external files include index.php, style
sheets, and other files (whether PHP or not) that the
web browser will request. These files can safely be put
in the document root, such as Zend’s default, /www/
zendcore/htdocs.

Examples of internal files include files used by your
application, such as “included” bits of code that execute
within your external files but are stored separately.
Configuration files containing passwords are often
included as well. These should be stored outside the

SystemiNetwork.com

sttemiNetworkAcom

document root (htdocs), where they can’t be executed
or potentially viewed by users. Here’s an example of
including (executing) a file from a safe location, such as
/www/zendcore/:

<?php

include ('/www/zendcore/
includes/config.inc.php');

// other code follows

7>

Another risky category is anything uploaded by users.

User-supplied files should never be put in the docu-
ment root. Imagine a rogue user uploading a harmful
script and then running it from your server! Choose a
folder outside the root, such as /'www/zend
core/uploads.

As a further protection, this directory should be
write-only to prevent even your application from read-
ing or executing files stored there. Use a non-PHP
batch script to retrieve uploaded files. Also, ensure that
your application carefully strips any attempt to embed
implicit directory creation requests in uploaded files.
For example, your application should detect and reject
a file name such as hackerslair/mygoodies/filel.

Don’t Give Scripts Free Rein
If permitted, PHP can read content both from local
folders and the Internet. For example, the functions
include() and readfile() can conveniently read local file
names such as /reports/quarterly.xls and remote URLSs
such as http://www.example.com/remotefile.html.
With so much power at your disposal, it’s wise to
think about what you really need and restrict those
capabilities you don’t need. This cautious approach
provides extra protection against unforeseen harmful
scripts and network trickery.
Options in php.ini that restrict what resources a
script can access include the following:
allow_url_include (default: Off; recommended
value: Off). The setting Off prevents your applications
from running (“including”) code located on remote
servers. Normally, commands such as include() and
require() can include code not only from the local
server but also from a remote one via a URL. The
danger with the setting On is that you could end up
running an attacker’s remote script. Allow_url_include
was introduced in PHP 5.2 (Zend Core 2.0).
allow_url_fopen (default: On; recommended value:
Off, if possible). When set to Off, allow_url_fopen is
more restrictive than allow_url_include, preventing
applications from even reading remote files via URL.
Turn it off if the application doesn’t need to open
other URLSs, or if you can substitute the cURL exten-

sion, which reads remote URLs more securely than
native commands.

open_basedir (default: allow all files to be opened;
recommended value: the folders needed by your
application). When open_basedir is specified with
a list of folders, commands such as readfile() and
fopen() will be able to access files only in the speci-
fied folders. As a result, scripts cannot read sensitive
data or modify files in other areas. When multiple
folders are specified, they should be separated with
a colon (although Windows systems use a semico-
lon). For example,

open_basedir = /tmp/:/www/zendcore/htdocs/:/reports/

will limit applications so that they can access data only in
the folders /tmp, /www/zendcore/htdocs, and /reports.

PHPSecinfo

The free PHPSecInfo tool from the PHP Security
Consortium analyzes your configuration and reports
potential security traps (Figure 2). PHPSecInfo is

an experimental tool; its suggestions are generic and
should not be blindly applied. It is nonetheless educa-
tional and well worth the quick download at phpsec
.org/projects/phpsecinfo.

Your Configuration’s Protective
Power

With some simple changes, your PHP configuration can
prevent or greatly limit misuse of your applications. The

—
Find Out More

Chris Snyder’s site:
chxo.com

IBM’s Zend Core for i5/0S Redwiki documentation:
www-941.haw.ibm.com/collaboration/ibmwiki/display
/59247327/Home

PHP manual’s security page:
php.net/security

Snyder, Chris, and Michael Southwell. Pro PHP Security.
Apress, 2005.

Zend’s main i5/0S page:
zend.com/products/zend_core/zend_for_i5_os

More resources:
alanseiden.com/phpsec

DECEMBER 2007 System iNEWS PROVIP 39

&< Juswabeuely swaysks BunoMIaN

Networking & Sy‘ ems Me;nagement -

M SAFE PHP ENVIRONMENT

guidelines in this article provide a safety net for your cre-
ativity and innovation on the web. To learn more, consult
the resources listed in Find Out More on page ProVIP 39.
Custom applications are best designed with security
in mind. Once you've used this article’s techniques
to secure your environment, the next step is to write
secure code. In my next article, I'll cover techniques
such as filtering input and escaping output to foil SQL
injections and cross-site scripting (XSS).

Thanks to Chris Snyder and Shlomo Vanunu for their
assistance with this article. [

About the Author:

P Alan Seiden enjoys leading collabora-
tive projects, developing software, and troubleshoot-
ing clients’ perplexing problems. A member of New
York PHP since 2004 and an early booster of PHP on
System i, Alan was recently profiled in the newsletter
of the New York Software Industry Association (nysia
.org/special_features/article.cfm?pid=383). Alan’s IT
blog is at www.alanseiden.com. You can reach him at alan@alanseiden.com.

Result

Warning

ous security risk
r using the PHP

rl_fopen is enabled. This coul

Current Value: 1

Recommended Value: 0
More information »

Pass

display_errors is disabled, which is the recommended setting

Current Value: 0

Recommended Value: 0

More information »

FIGURE 2
PHPSecInfo output (excerpt)

and explores market segments.

Need Info About Our Industry?

NEWS Daily delivers the latest in breaking news and new product announcements.
Industry Report analyzes System i industry trends and issues, investigates adoption of new technologies,

Hot or Not lets you know which new IT technologies will likely affect your business.
Industry Observer provides Web resources for your technology-related research on current issues.

To receive NEWS Daily e-mail newsletter, sign up at SystemiNetwork.com; click “My Profile” To access the
Industry Report, Hot or Not, or Industry Observer monthly columns, go to the SystemiNetwork Article
- Archive search page and select "Locate by Department” and then the appropriate column.

40 PROVIP System iINEWS DECEMBER 2007

SystemiNetwork.com

